
ELSEVIER 

Available online at www.sciencedirect.com 

SCIENCE ~ D I R E C T  ® A P P L I E D  
M A T H E M A T I C S  

A N D  M E C H A N I C S  

www.elsevier.corn/Iocate/jappmathmech 

Journal of Applied Mathematics and Mechanics 68 (2004) 511-521 

THE METHOD OF PROGRAMMED ITERATIONS IN 
ABSTRACT CONTROL PROBLEMSt 

A. G. C H E N T S O V  

Ekaterinburg 

e-mail: chentsov@imm.uran.ru 

(Received 14 January 2004) 

A direct version ("direct" in the sense of constructing control procedures - quasistrategies) of the method of programmed iterations 
is considered for the abstract problem of control of bundles of trajectories, information about which is realized by means of a 
certain signal. Conditions for the guaranteed solvability of the problem of encounter with a functional set, as defined by an iterative 
procedure in the space of multivalued responses to signals reaching the system, are investigated. © 2004 Elsevier Ltd. All rights 
reserved. 

The procedure investigated here is known in control theory as the programmed iteration method (PIM). 
In essence, the PIM may also be considered in a broader context, as a method of constructing fixed 
points of operators which are extremal in the sense of some order relation. At the same time, historically 
speaking, the PIM is related to problems of the differential games theory [1-8], where it is used to 
construct value functions and stable bridges in N. N. Krasovskii's sense. Problems related to the use of 
programmed constructions to construct control strategies according to the feedback principle have 
traditionally occupied an important place in the research of the Krasovskii school. The ground of PIMs 
was prepared by the development of these programmed constructions of classical control theory, on 
the one hand, and by an essentially new theory of feedback control based on the fundamental Alternative 
Theorem of Krasovskii and Subbotin, on the other. This theory is associated with the use of very irregular 
(non-linear, discontinuous) control laws according to the feedback principle (Krasovskii's formaliza- 
tion), whose importance was convincingly demonstrated by N. N. Subbotina and A. I. Subbotin. It should 
be mentioned that in control problems with interference, earlier constructions of PIMs (see [9-12], etc.) 
were successfully combined with idealized control procedures - multivalued quasistrategies (see also [13, 
14]); in connection with the concept of a "quasistrategy", we recall the papers [15, 16]. Also worthy of 
mention here are the studies [27-19] related to constructions of PIMs. 

In control problems one frequently encounters the problem of incompleteness of information about 
phase states (in this connection see [3, 20-22]). General principles have been formulated for positional 
control in differential games with incomplete information [3]. Problems of programmed and positional 
control based on incomplete data, and minimax problems of observation and filtering, have been 
considered [20]. An important notion is that of an information set [20, p. 290], which has been widely 
used in control and observation problems. 

In what follows an attempt is made to use the so-called direct version of the PIM in a control problem 
with incomplete information; we have in mind signal-based control and abstract analogues of signal- 
based control. As control procedures, we propose to use multivalued quasistrategies, that is, non- 
predictive responses to a signal; in the abstract version, we use the hereditariness of the response (an 
analogue of "non-predictiveness"). This particular construction of control procedures is related to an 
approach developed in [23-25] (the direct version of the PIM). The essence of these constructions, 
among which is the construction needed to construct a signal-based control quasistrategy, is to create 
an iterative procedure, each step of which essentially isolates the non-predictive part of an already 
constructed multifunction. 

?Prikl. Mat. Mekh. Vol. 68, No. 4, pp. 573-585, 2004. 
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1. G E N E R A L  C O N C E P T S  AND NOTATION 

In what follows, for brevity, we shall use quantifiers and propositional connectives [26]. A family is a 
set all of whose elements are sets. The axiom of choice is assumed. The following general notation is 
essential for the direct version of the PIM in its abstract form. 

We denote by ~(H) (~(H)) the family of all (all non-empty) subsets of a set H, and by B A the set 
[26] of all functions defined in A and range in B. I f A  and B are sets, f ~ B 4 and C ~ ~(A),  then 
(fl C) ~= f n (C × B) ~ B c is by defined the restriction o f f  to C; (fl C)(x) = f(x) forx s C. We denote 
by ~ the real line; A r & {1; 2; ...} and X0 A {0} U .N" = {0; 1; 2; ...}. With each operator defined in a 
given set we associate the sequence of its power: ifA is a set and T ~ A A, then the sequence (Tk)k ~ x0 
in the set A A has the form 

(TO(a) a__ a Va ~ A) & (1 a' = T o T k- 1 Vk E X)  (1.1) 

In terms of (1.1), given ~ s A, we obtain a sequences (Tk(eO)k ~ Xo inA with the properties 

(T°(a) = a)  & (Tk(c~) = T(T ~- l(~)) Vk ~ aV) (1.2) 

Iterative procedures of type (1.2) are used, in particular in schemes of the PIM. For any sets U and 
V, we set M(U, V) A= ~(V)U; the elements of M(U, V) are also called multifunctions from U and V. 
One can, in particular, use the caseA = M(U, V) in relations (1.1) and (1.2). In that case we introduce 
the infinite power of an operator defined in A. 

Thus, if U and V are sets and T is an operator defined in M(U, V ) ,  then the operator T ~, which is 
also defined in M(U, V), is defined by the rule: for % e M(U, V) and u s U 

r ' (%)(u)  a_. 0 /a'(%)(u) (1.3) 
ke At0 

We let E denote the pointwise order relation defined in the space of multifunctions by embedding: if 

U and Vare sets, and a e M(U, V) and [3 e M(U, V), then ~ I'- 13 stands for the statement 

a(u) c f~(u) Vu ~ U 

In these terms, we introduce the concept of isotonicity of operators defined in spaces of multifunctions. 
For any sets U and V, we let At[U; V] denote the set of all operators T defined in ~(U,  V) such that 
T(%) E q~ V% ~ ~(U,  V). In what follows, we will need the concepts of monotone convergence of 
sets and multifunctions. The first concept is standard [27, Chap. I]: if U is a set, (Mi)i ~ sr is a sequence 
of subsets of U (that is, a sequence in ~(U)) and M ~ ~(U),  then (Mi)i ~ x $ M means that (1) M is the 
intersection of all the sets Mi, i ~ At; (2) Mk + 1 C Mk Vk ~ X. This type of convergence carries over to 
the case of multifunctions: ifA and B are sets, (~i)i ~ N is a sequence in ~(A,  B) and % ~ ~(A,  B), then 
by definition 

(((~i)ie 2~ ~ ¢~) ~ ( (~ i (a ) ) i e  d¢ ,1, ~(a)  Va ~ A) (1.4) 

Thus, in spaces of type ~(A,  B) one uses the pointwise order relation E and pointwise convergence 
(see (1.4)). We mention one simple corollary: irA and B are sets, T ~ At[A; B] and % ~ M(A, B), 

then the sequence (Tk(%))g ~ Jv (in ~(A,  B)) converges to the multifunction T~(~) defined in (1.3), 
that is 

(Tk(%)k~ X ~ T=(~)) 

2. AN A B S T R A C T  C O N T R O L  P R O B L E M  
W I T H  I N C O M P L E T E  I N F O R M A T I O N  

We shall consider a fairly general formulation of the problem of signal-based control, where the signal 
comes from a certain object. The control procedures are defined as multivalued quasistrategies, as 
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applied in control problems with complete information (in this connection see [15, 16], where single- 
valued quasistrategies are used in problems of differential game theory). In connection with the following 
constructions, we note the example [28, pp. 357-360] of a certain class of signal-based control problems 
(we have in mind the game-theoretic problem of encounter up to a given time when the information 
about one of the objects is distorted by additive noise). The idea of the construction of the solution is 
then extended to the very general case of hereditary control procedures, but the hereditary property 
itself is no longer necessarily related to the traditional non-predictive property in the class of responses 
to a time function. This hereditariness property corresponds to a concept introduced in [23-25] (the 
traditional interpretation associated with the non-predictiveness of responses to the generated time 
functions will be described in Section 6). 

Intuitively speaking, the problem considered below (in its general formulation) corresponds to a system 
developing in a certain abstract space; the control aspect of the system's operation has a well-defined 
goal, whose implementation is hindered by uncertainty as to the conditions in some part of the space. 
Concerning these conditions (which may be represented by a mapping defined in the abstract space) 
one has only indirect information, supplied as a signal produced by a mechanism which is not required 
to be hereditary in any sense. In the developing system under consideration, on the contrary, only heredi- 
tary procedures are admissible, corresponding in actual fact to the use of responses to the fragment of 
the signal received by the system. These fragments themselves depend on a previously specified family 
of non-empty sets (in the abstract space), whose points, generally speaking, do not have the sense of 
instants of time. Only the sets themselves, to which the interacting mappings are restricted, are essential. 
It is in terms of these restrictions that the property of hereditariness is defined, admitting of both 
interpretations that are traditional for the theory of dynamical systems and non-traditional interpreta- 
tions (not formally associated with any dynamics). For example, one might speak of computing fragments 
of certain functions given indirect information about the analogous fragments of other functions, 
subsequently extending the domain of the space that determines those fragments. 

In this very general situation, the actual operations performed may be interpreted as implementation 
of hereditary choice (in the aforementioned sense). The mechanisms for such choice (responses to a 
signal) may be considered as analogues of control procedures. However, uncontrollable factors (the 
characteristics of the space, formalized by mappings from some functional set, and also the possible 
versions of the signal itself) affect the actual implementation. One has to consider bundles of possible 
trajectories, understood of course in a broadened sense compared with the "usual" case of controlled 
dynamical systems. It is natural to require such a procedure of hereditary choice to furnish guarantees 
in the part relating to the achievement of the goal on trajectories of a bundle. We thus arrive at a game- 
theoretic formulation, as will be reflected in the discussion that follows. 

From now on, X, Y, Y and E will be arbitrary fixed non-empty sets. We use X as an analogue of 
the control interval. The sets Y, Y and E will play the role of sets of values of functions defined on X. 
Weflx 

( Z e ) , ( y X ) )  & (Ee  ~"(EX)) 

where Z and E are two non-empty sets in function spaces: Z C yX, £_ C E x. Functions defined in Z and 
E play the part of trajectories; we assume that the choice of a "trajectory" z • Z is supervised by player 
I and the choice of a "trajectory" e • tF by player II. A set M • @'(Z x E), that is, a non-empty set 
M, M C Z x E, is given. Player I's goal is to bring about the event (z, e) • M, but his information about 
the "trajeCtOx~,," e • F needed to choose z • Z is generally incomplete, that is: player I receives the 
signal c0 • 1 ~ (a function from X into 1~) generated by the "trajectory" e. 

Thus, let us fix on operator 

A : E ~ ~ ' ( r  x) (2.1) 

that is, a multifunction from I: into yx; if e • I:, A(e) is the set of all signals that are possible upon 
realization of e. Player I's actual choice of X • A(e) is not predicted. Then 

f~ __a k_) A(e) e ~,(yx) (2.2) 
e e E  

is the set of all possible signals (the choice of the "trajectory" e e iF is also not predicted for player I). 
Thus, ~ is a non-empty set in the space )~x = {X --~ Y } of all functions defined in X with range in 

~f; information as to a function co e £2 will be communicated to player I. Consequently, of course, he 
will also have information as to the non-empty set {e • l:lo) e A(e)}. 
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We define an operator 

n : f l  ~ ~ '(E) (2.3) 

(that is, a multifunction from ~2 into E) by the logical rule: if co e ~,  then k(03) __a {e e E[03 e A(e)}. 
Definition (2.3) is actually a rule for constructing functional information sets. The operator (2.3) may 
be considered, in a sense, as the inverse of A (2.1). 

We define o~ ° e M(~2, Z) by the  rule 

a0(co) a_ {ze  ZI (z ,e)e  M V e E  R_(o))}, V~oe ~ (2.4) 

We now have an object multifunction from f~ into Z. The meaning of the definition (2.4) of c~ ° is the 
following. If a signal 03 has been made available to player I, he is forced to admit of the possibility that 
any "trajectory" e e E capable of producing that signal may have been chosen. Player I's goal will be achieved 
with a guarantee, if the required encounter with the set M is assured for all "trajectories" in k(03), since 
he must prepare for the possibility that player II will have taken the most unsatisfactory actions. Moreover, 
the signal co itself may be produced in a way that is unsatisfactory for player I. Finally, in typical specific 
settings of this kind, the trajectoryz e Z must be produced "in real time", as the signal fragments arrive. 
In the very general formulation considered here, we introduce an abstract analogue of this requirement. 

Let % be a given non-empty family of non-empty subsets of X: ~ e ~ ' ( ~ ' ( X ) ) .  A special notion of 
hereditariness is defined in terms of ~, namely, ~-hereditariness: if a e M(f2, Z), we call ~z hereditary 
multifunction (from f2 to Z) if V03~ e £2, V03 2 e ~ ,  VA e 

((03~ I A) = ( m 2 l A ) ) ~  ( { ( z lA) :z  e a(m~)} = { ( z lA) :z  e a(~2)})  (2.5) 

Remark. In the caseX = [to, 0o], where to e ~, Oo e ]to, ~[ and ~g = {[to, t]: t ~ X}, formula (2.5) defines the 
traditional condition for the response c~ to be unpredictable (in multi-valued form). 

In connection with condition (2.5) we mention the general constructions of [23-25] and [28, Chap. 6]. 
We recall some of them. IrA e ~, then 

(~0(031A) _a {v e ~I(031A)= (via)} x/me ~)&(Zo(zlA)~= {z'e Zl(zlA)= (z'lA)} Vz e z)  

and in these terms we define FA e ~t[O, Z] as the mapping defined in M(f2, Z) by the rule V~ e 
~ ( ~ ,  z ) ,  V03 e 

rA(~)(0~) -~ {Z e ~(03)IZo(ZIA) c~ ~(v) ~ ~ Vv e f~o(031A)} (2.6) 

With the operators FA,A c ~, we associate in the natural way (see [23-25]) the operator F e ~t[~, Z] 
such that 

r ( ~ ) ( o )  ~ C~ ra(~)(O)  V~ e [~(~,  Z), VO e ~ (2.7) 
A e ~  

Definitions (2.6) and (2.7) correspond to those introduced in [23-25]. 
The operator F plays an important part in relation to the hereditariness condition: a multifunction 

cz e M(f2, Z) is hereditary in the sense of (2.5) if any only if a = F(a).  
Thus, the hereditary multifunctions are precisely the fixed points of r .  Thus, N =A {a e M(f~, Z) la  = 

F(cz)} is the set of all hereditary multifunctions from f2 to Z. Note that (see [24, 25]) 

F A o F A = F A VA e (2.8) 

that is, the operator (2.6) has the useful property of idempotency. As a corollary 

{me m(n,Z)la-- ra(a)} = { r a ( ~ )  : l i e  M ( ~ , Z ) }  VA~ (2.9) 

For further constructions it makes sense to associate relations (2.8) and (2.9) with the multifunction 
a ° of (2.4). Define 

No a__ { a e  l%llalZa °} (2.10) 
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The elements of set (2.10) are precisely the hereditary multiselectors ~0. Set (2.10) has a E-greatest  
element (na)[~ °] e N°; with this notation 

(na)[cx°](to) ~ k.) %(to) Vtoe ~ (2.11) 
~ e N  ° 

Note that (see (2.8) and (2.9) and the arguments of [24, 25]) set (2.10) admits of a representation in 
terms of the action of the operators FA,A e ~, namely 

N 0 a O {FA(C~): ~ E [ ~ ( ~ , Z ) , ~ E  ~0} (2.12) 
AE~f 

and the multifunction (na)[c~ °] e N O is such that • E (na)[cx °] V~ • N °. Thus (see (2.12)), to define 
multifunction (2.11), one has to construct the set 

S O ~ { % •  M(fLZ)I~___ct °} (2.13) 

and then consider the images of set (2.13) under each of the operators FA, A • ~g. The intersection of 
these images (which coincides with N °) contains the multifunction (na)[c~ °] of (2.11). Moreover, this 
multifunctions is the E -greatest element of the intersection. This approach thus reduces to inspecting 

the multifunctions in each of the aforementioned images of the set (2.13) and choosing the _ -greatest 
of them. 

If cz • M(f2, Z), we define 

(DOM)[c~] & {toe  n l a ( t o ) ¢ : O  } (2.14) 

(the effective domain of the multifunction c~). In terms of N and (2.14), we construct the set of (multi- 
valued) quasistrategies: let Q denote the set of all c~ c N such that (DOM)[cx] = f~. As the basic question 
we consider that of guaranteed encounter, realizable by a suitable quasistrategy, with the set M. In this 
connection we give special consideration to the question of solvability and, when that question has a 
positive answer, the problem of constructing a suitable quasistrategy. 

In this formulation, then, the quasistrategies are precisely the non-degenerate hereditary multifunc- 
tions. Hence, by definition (2.4) 

QO ~ {a  • N°I(DOM)[ct] = f~} (2.15) 

is the set of all quasistrategies for which the "trajectories" will surely encounter M for any realization 
of the signal. In rigorous terms, the following proposition holds for Q0 (2.15). 

Proposition 1. QO is the set of all quasistrategies a • Q for each of which 

( z , e ) •  M V e •  E, Vto•  A(e), V z •  a(to) 

We confine ourselves to an outline of the proof, setting 

Qo ~- { a e  Ql(z,e) e M V e •  E, Vtoe A(e), Vze  a(to)} 

Choose an arbitrary 13 o e Q0, which means that (for a multifunction 130 e Q) the following property holds 

I~°(co) c a°(co) Vco • 

Let e, • E; then A(e,) e ~'(f~) by definition (2.2), that is, A(e,) is a non-empty subset of f2. Choose co, • A(e,). 
Then 13°(o),) C a°(co,). In addition, e, • [(co,) by the definition of the operator (2.3). Taking definition (2.4) into 
account, we now obtain 

(Z, e , )  e M Vz • 1]°(03,) 

Since the element co, was chosen arbitrarily, we have 

(z ,e , )e  M Vco• A(e,), '7'z• ~0(co) 
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But the choice of the element e. was also arbitrary. Thus 13 ° • Q0, since [3 ° is a quasistrategy. This establishes 
the embedding Q0 c Q0. 

Let 130 • Q0. Then, in particular, 130 e Q. Choose an arbitrary co* • f~. Then 

[(¢o*) = {e~ ~=1o~*~ A(e)}, [ (o) ' )#0  

Let e* • [(co*). Thus, e* • ~ and at the same time co* • A(e*). 
Thus, e* • IF and co* • A(e*), which by the definition of Q0 implies 

(Z, e*)  ~ M Vz • ~o(tO*) 

Since the element e* was chosen arbitrarily, we have shown that 

(z, e) • M Ve • [(~o*), Vz • [~0(o~*) 

As a corollary, definition (2.4) implies the embedding 130(o~*) C a°(co*). Since the choice of the element co* was 
arbitrary, we obtain the property [30 ___ a ° and, as a corollary, [~0 e N ° (see (2.10)). But 130 is a quasistrategy, and 
therefore (DOM)[[30] = f2 and, by definition (2.15), [30 • Q0. The embedding Q0 c Q0 has thus been established, 
which is what was required. 

By property (2.15) 

((na)[ao] • QO) ¢:~ ((DOM)[(na)[aOl] = f~) (2.16) 

Taking the extremality property of (na)[c~ °] into consideration (see definition (2.11)), we infer from 
definition (2.15) that 

((na)[o~O] ~ Q) ¢~ (aO = 0 )  (2.17) 

Properties (2.16) and (2.17) determine the role of (na)[a °] in problems relating to the solvability of 
the basic problem in the class of quasistrategies. 

Proposition 2. If (DOM)[(na)[c~°]] ¢ ~2, then Va • Q 3e e ~z 360 • A(e) 3z • c~(co): (z, e) ~ M. 
The proof follows easily from relation (2.17). 
Properties (2.16) and (2.17) and Propositions 1 and 2 imply the following. 

Theorem 1. The following properties are equivalent: (1) (na)[a°l e Q0, (2) Q0 ¢ ®. 
Thus, the basic problem is successfully solvable in the class of quasistrategies if and only if (see property 

(2.16)) and the sets (2.11) are non-empty. At the same time, representation (2.12) also implies the 
following property: if a multifunction ~0 • M(f2, Z) exists for which (DOM)[~  °] = ~,  and in addition 
the condition of membership in the image of the set (2.13) under the action of every operator FA, 

0" 0 0 A • • is satisfied, then Q ~e O; when that happens, ~ e Q .  In connection with analogues of 
this approach associated with the transformation S o of (2.13), we mention certain relations obtained 
in [29, 30]. 

3. T H E  M E T H O D  OF I T E R A T I O N S  
0 Representation (2.12) indicates an approach to the definition of a multiftmction in N and, in particular, 

0 to the definition of (na)[~ ]; the latter multifunction contains exhaustive information about the possibility 
of solving the basic problem in the class of quasistrategies (see Theorem 1). As a whole, representation 
(2.12) has the sense of experimentation with responses to possible signals subject to the multifunction 
~0; the main role here is that of actions based on operators (2.6). A more regular method is obtained 
by having recourse to definition (2.7) and carrying out an iterative procedure on that basis. 

Consider the sequence (Fk)k E No of powers of F and the limiting operator r ~ (see (1.3)). Then 
(l~(o~°))k ~ x0 is a sequence in M(f2, Z) for which 

(r° (a  °) = a°)&(rk(a °) = r (rk- ' (a° ) )  vk e (3.1) 

The sequence (3.1) converges (pointwise) to a multifunction F~(tx °) ~ M(f~, Z) 

k 0 (F ( a ) ) k ~  J¢II r=(ct °) (3.2) 
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where (na)[o~ °] E F=(c~ °) (see [23-25]). Consideration of property (2.16) and Theorem 1 yields the 
following. 

Proposition 3. If (DOM)[F=(c~°)] ¢ ~2, then Q0 ¢ O. 
Thus, an iterative method based on relations (3.1) and (3.2) (the direct version of the PIM) may always 

be used to obtain sufficient conditions for the basic problem to be solvable in the class of quasistrategies. 
In fact, in many cases the convergence in (3.2) actually yields (na)[~°]. Conditions of this kind were 
described in [23-25]. For the moment we will recall only a few general arguments. 

Let 3 denote the family of all sets S, S C M(fL Z), such that F(~) ~ S V~ e S (this is the definition 
of the family of all F-invariant subsets of M(f~, Z)). Let Z denote the family of all sets ~, @ C M(f~, Z), 
such that V ( H i )  i e 3¢ • ~X VH • M(f~, Z) 

((Hi)ie ~c II H) ~ (He  ~) 

Z may be regarded as the family of all subsets of M(g2, Z) that are (sequentially) closed under 
g-convergence. Finally, let IN denote the family of all sets U, U C M(~, Z), such that V(Uj) 7 ~ x e 
U ~v VU • M(~, Z) 

((Uj)je N ~ U) ::::> ((F(Uj))j~ x lI F(U)) 

In the latter case we are considering subsets of M(~, Z) on which the operator F has a certain analogue 
of the property of sequential continuity. Note that ifU • ~ and a0 e U, then (Fk(a°))k~ x0 is a sequence 
in U; if in addition U • Z, then F = (co °) e U. It is known [24, 25] that if S e 3 n IN and c~ ° e S, then 

F~(~  °) = (na)[o ~°] (3.3) 

but if in addition S • Z, then (na)[a °] • S. 
Consideration of (3.3) yields the following. 

Theorem 2. Let 9S e ~ n IN: a0 e S. Then the following three statements are equivalent: 
(1) (DOM)[r=(a°) ]  = n ,  (2) 1P=(c~ °) e Q0, (3) Q0 ¢ •. 

Thus, to determine whether it is possible to solve the basic problem successfully in the class of quasi- 
strategies, one must verify the properties of the multifunction (2.4), carry out the iterative process (3.1), 
(3.2), and determine whether the effective domain of its limiting multifunction coincides with f~. 

In the next section it will be shown that the conditions imposed on the multifunction a ° in Theorem 2 
are frequency quite easy to verify. 

4. T O P O L O G I C A L  CONSTRUCTIONS AND 
THE METHOD OF ITERATIONS 

Let us consider the common case in which player I's "trajectory" is realized in a Hausdorff topological 
space. Thus, let the set Y (see Section 2) be endowed with a topology ~ such that (Y, "c) is a Hausdorff 
space [31, p. 98].? Let ~c(z) be the topology of the set yX corresponding to the Tikhonov product of 
copies of the space (Y, "0 with index set X (see [31, p. 127]). Let ~ denote the topology of the set Z 
induced [31, p. 77] from 

(yX, ®x(x)) (4.1) 

Consequently, (Z, t}) is a subspace of the topological space (4.1) and t~ is the pointwise convergence 
topology in Z [31, p. 283]. Let ~ (resp. ~{) denote the family of all compact [32, p. 196] (resp. sequentially 
compact, [32, p. 314]) subsets of Z in the topological space (Z, 0). This topological space is Hausdorff, 
and each set in ~ is compact [32, p. 208] in the topology induced from (Z, 0). Recall that ~a  and ~{a are 
the sets of all mappings from ~2 into ~ and ~{, respectively. It follows from general arguments [23-25] that 

( ~ a  e ~ n Z ~ IN)&O{ a • ~ n Z n IN) (4.2) 

1"Editor's note. For [31] and [32], the page numbers refer to the Russian editions of these books. 
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Property (4.2) may now be used in Theorem 2. First, however, we point out a simple corollary of 
properties (3.3) and (4.2). 

Proposition 4. If a ° s En, then F=( s  °) = (na)[s °] e ~a.  In the case o~ ° e 7£a, we have F=(a  °) = 
(na)[s 01 ~ ~a .  

As a supplement of Proposition 4 we mention a theorem [28, Theorem 6.1.2] on the basis of which 
one can achieve a combination of fragments s ° with compact and sequentially compact values. 
Theorem 2 and property (4.2) imply the following theorem. 

Theorem 3. If ( s  ° ~ En) v ( s  ° ~ g~a), then statements 1-3 of Theorem 2 are equivalent. 
In connection with the conditions imposed on a0, there is also a useful addition to representations 

(2.12) and (2.13). By analogy with property (4.2), it can be shown [28, p. 355] that, i fA ~ %, one has 
the following invariance properties: (1) {FA(%): ~ ~ Ea} C Ea; (2) {FA(~): ~ s 7~a} C ~a .  As a 
corollary, it follows from (2.12) that 

N O (3 ~ a  = (~  {FA(~): ~ ~'1, ~_ .S0}  (4.3) 
Ae~ 

N 0 ~ £ O  = ~ {FA(~) : ~ ~{~a, ~ E  0} (4.4) 
Ae~ 

Using a priori information about s °, one can now use relations (4.3) and (4.4) to implement an 
analogue of the constructions relating to representation (2.13). 

In fact, if s ° e ~n  (that is, s ° is a compact-valued multifunction), one has to define 

S~ _a { a s  Ka]a__ s0} (4.5) 

and construct the images of this set under each of the operators FA,A ~ ~. The intersection of all these 
images contains (na)[s °] and, in addition, (na)[s  °] is the E-greatest  element of the intersection. In 
general, if one can find in the aforementioned intersection of images a multifunction ~ o  e ~;n with 
the property (DOM)[~  °] = ~,  then Q0 ¢ Q (provided that s ° is compact-valued). 

But if s ° s ~£n, then one uses relation (4.4) to the same end: define 

(4.6) 

and construct the images of this set under each of the operators FA, A ~ ~. Then (na)[s  °] is the E -  
greatest element of the intersection of all these images. If the intersection contains a multifunction 
~ 0  ~ ~ a  for which (DOM)[~°~] = ~,  then Q0 ~ ~ .  

We have thus established criteria for the successful solvability of the basic problem without using the 
method of iterations. 

5. T H E  C O N D I T I O N S  F O R  T H E  B A S I C  P R O B L E M  TO BE 
U N S O L V A B L E  IN T H E  CLASS OF Q U A S I S T R A T E G I E S  

A more general sufficient condition for the problem in Section 2 to be unsolvable is contained in Proposi- 
0 tion 2. Necessary and sufficient conditions in the appropriate classes of multifunctions c~ may be derived 

0 from Theorems 2 and 3. They all relate to the problem of observing the situation I '= ( s  )(c0) = ® for 
a certain realization ~ ~ ~.  We will now consider a few further possibilities in this direction, appealing 
to general arguments (see [23-25] and [25, Chap. 6]) relating to the factorization of ~.  

Let Ho be defined as the family of all sets H E ~'(f~) such that 

U ~o(O)1 A) c H Vo~ ~ H (5.1) 
Ae~ 

Now let It0 be the set of all families ~ E ~ '(H0) such that: (1) f2 is the union of all sets U ~ ~ ,  
(2) (U1 n U2 ~ O) ~ (U1 = U2) VU1 ~ o~, VU2 ~ ~.  The elements of H0 are partitions of the signal 
space into a sum of non-empty sets with property (5.1). In terms of tto one can implement (see, for 
example, [28, Sec. 6.8]) a system of local iterative processes which are then "glued together" into a 
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procedure (3.1), (3.2). These processes correspond to cells of the corresponding partitions in t t  0. This 
useful possibility will not be considered now. We shall consider only how to use these same partitions 
and the factorizations associated with them to look for ways to facilitate the verification of the property 
Q0 = 0 .  In this connection we note that, if (a  e Na) v ( a  • gfn), the following property holds for o • 
~: if (na)[c~°](co) = ®, then 3n • ~C: F(a°)(co)  = 0 .  In fact, in this proposition one can also use certain 
conditions imposed on o~ ° that admit of a combination of fragments of this multifunction with compact 
and sequentially compact values [28, p. 347]. 

We henceforth assume that the following condition holds. 

Condition 1. The family ~ is the basis of a filter in X, that is 

VA ~ ~ V B ~  ~ 3 C ~  ~g: C c A  n B  

Remark. In control problems, a typical situation is X = [to, "30], where to < O0 are two numbers and ~f is the 
family of all closed intervals [to, t], t ~ X. Condition 1 is satisfied in that case. 

It is evident that in the case under consideration 

= ~0(colA): co • f~ • It  0 (5.2) 

This defines a factorization of f~; in fact, the factorization is extremal in tI0: the partition ~ is inscribed 
[32, pp. 195, 196] in any set ~ • t t  0. If o~ • M(~,  Z)  and S • ®, then 

((DOM)[F(a)]  n S #  ~ )  ~ (S c (DOM[a])) (5.3) 

Property (5.3) of the partition (5.2) (it has been verified - see [24] and [28, Sec. 6.9]) makes it possible 
to provide a few prescriptions relating to the question of the non-degeneracy of (na)[a°]; for the present 
we will confine attention to just one property: if S • ®, then 

((DOM)[(na)[a°]]  n S ~ ~ )  ¢:* (S c [DOM][(na)[a°]])  

We note one very general proposition (see [24, 25] and [28, Sec. 6.11]). 

Proposition 5. Suppose C • ~ and 

(a°(co) • ~ Vo • C) v (a°(co) • ~ Vco • C) 

Then the following conditions are equivalent: 

(1) (DOM)[(na)[a°]] n C = O; 
(2) C\(DOM)[(na)[c~°]] ¢ O; 
(3) 3k e At: (DOM)[F~(a°)] n C = O; 

(4) 3k e ~'0: C\(DOM)[F~(a°)] ¢ 0 .  

0 Discussion. Proposition 5 does not require the sequence (3.1) to converge to (na)[c¢ ]; the assertion is local in 
nature - the analysis relates to a cell C of the partition (5.2) and the fragment ((na)[c~ °] I C) of the multifunction 

0 0 (na)[c~ ] on that cell. If there is some o ~ C for which (na)[a ](o) = O (see Condition 2 in Proposition 5) then, 
by Condition 3, some n ~ ~c exists such that Fn(c~°)(~) = ~ V~ e C. Thus, the direct version of the PIM (see 

0 condition (3.1)) enables us, provided a has natural topological properties on the cells of (5.2), to establish the 
0 0 0 property (na)[~ ] ~ Q (and hence also Q ¢ 0; see Theorem 1) without recourse to a limit procedure; moreover, 

this property is established universally in the sense of the choice of a signal from the appropriate cell. The property 
n 0 0 F ( a ) ( o )  = O itself is factorized on the basis of (5.2), which facilitates verification of the condition Q ~ O (one 

. , ,  n 0 . . can consider a cell analogue of the condition F ( a ) (o )  = Q as a safe version of verifying the unsolvability of 
the basic problem in the class of quasistrategies). 

6. A S I M P L E  E X A M P L E  OF A C O N T R O L  P R O B L E M  

We will now consider the interpretation of the general constructions of the foregoing sections for a 
simple control problem. Suppose we are given two systems 
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= u, u •  P ,  (6.1) 

= 1), o • Q .  (6.2) 

where z, e, u and v are n-dimensional vectors, and P .  and Q .  are non-empty compact sets in the n- 
dimensional arithmetic space Rn; assume that P .  is convex (for clarity, we wilt confine our attention to 
so-called simple motions). The motions of systems (6.1) and (6.2) are considered in an interval [to, 00], 
where to • ~, 00 • ~ and to < 00. System (6.1) is to be solved with initial dataz(t0) = z0 • Rn. All that 
is known of the initial state of system (6.2) is that it is a point of a non-empty bounded set E . ,  E .  C Rn. 

Player I controls system (6.1) using any function U = u(-) from the set ~ of all Borel mappings from 
[to, 00] into P . .  Every function U • ~ generates (starting from a point z0) a trajectory q)~) over [to, 00], 
obtained by integrating U over the intervals [to, t[, t • [to, 00]. The bundle {q~): U • °k} will henceforth 
be denoted by Z, assuming (see Section 2) that Y = N,. Of course, Z is a non-empty compact set 
in the space C of all continuous n-vector-valued functions in [to, 0o] with the uniform convergence 
topology ~. 

System (6.2) is controlled by player II, who applies to that end any function V = ~(') from a certain 
non-empty set ~" of Borel mappings from [to, 00] into Q. .  In addition, he may choose any vector of 
initial data e0 • E . ,  after which (starting from the point e0) a trajectory q0(~ ) [e0] is generated over 
[to, 00], obtained by integrating the function V over the intervals [to, t[, t • [to, 00]. The bundle of 
all such trajectories q0(v 2) [e0], V • ~ ,  e0 • E .  will henceforth be denoted by E, on the assumption (see 
Section 2) that E --- R,. Of course, E is a non-empty set in C which is bounded in the sup-norm of C. 
Given all these assumptions, it is natural to assume from now on that X = [to, 00]. 

Let I1" II be, say, the Euclidean norm in ~ ,  5 • ]0, ~[.  Putting "f = R~, we define the operator A of 
(2.1) as follows: ife • IF, then A(e) is defined to be the set of all functions from [to, 00] into R~, for each 
of which 

l i e ( t )  - 03(t)tl -< ~ Vt • [to, O01 

This conditions corresponds to the action of additive 8-bounded noise in the measurement channel. 
Following definition (2.2) with the above specific choice of A, we conclude that ~ is a non-empty set 
whose elements are functions from [to, %] into An. As a consequence, the operator (2.3) pairs each 
such vector-valued function with a non-empty subset of the bundle IF. In accordance with what was said 
in Section 2, we fix a set M, M C Z x E; suppose 

M[e] ~ { z •  Zl(z,e) • M} Ve • IF (6.3) 

Endowing the set Y = Nn with the usual coordinatewise topology, we obtain in the form 0 the natural 
pointwise convergence topology on the set Z [31, Chap. 7]. In this connection it is useful to point out 
the relation with the uniform convergence topology t on Z induced (in Z) from (C, ~-) [31, p. 77]. Of 
course, t is the topology of Z generated by the uniform convergence metric; under those conditions 
[32, p. 174] 0 C t, and therefore every subset of Z which is compact in the topological space (Z, t) is 
also compact in (Z, 0), that is, it is an element of E. Let us assume now that every set (6.3) is closed 
in the topological space (Z, t). 

In relation to the family ~ we define 

a_. {[t0, t]: t •  [to, Oo] } 

Clearly, such a family ~ is the basis of a filter in X. Thus, the general formulation of the problem in 
Section 2 has been specialized; in the process, condition (2.5) becomes the usual requirement that the 
multivalued response o~ to signals developing in time is unpredictable. The meaning of tx ° is also clear: 
associated with every possible signal 03 is a bundle of trajectories in Z implementing an element M paired 
with any trajectory in IF that may be generated by the signal. 

We will now consider the topological properties of t~ ° and show that c~°(03), 03 e ~,  are compact subsets 
in (Z, t) of Z. The space (Z, t) itself is compact. Thus it will suffice to show that these sets, the values 
of o~ °, are closed. Fix 03 e ~ .  Consider the set ~0(03) (see definition (2.4)). Since the compact space 
(Z, t) is metrizable, it will suffice to prove sequential closure. Let the function z • Z be such that some 

0 sequence (zi)i ~ x in a (03) converges to z in (Z, t). Choose an arbitrary e • 1_(03). It follows from definition 
(2.4) that (zi, e) • M Vi • Jr. In other words (see property (6.3)), (zi)i ~ x is a sequence in M[e] converging 
to z in (Z, t). Since M[e] is closed, we have z • M[e], which means that, as the choice of e was arbitrary, 
we have z • a0(03) (see properties (2.4) and (6.3)). Thus, the set ~°(co) is closed in (Z, t), and so it is 
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compact there as well. Taking the relation between 0 and t into consideration, we conclude that the 
set a~0(co) is compact in (Z, O). Since the choice of co was arbitrary, this shows that ~0 a ~n. By Proposition 
4, we have (na)[o~ °] = F (a0), and Theorem 3y!elds the necessary and sufficient conditions that Q0 e ®, 
Namely, this condition holds if and only if F (c~°)(co) ~ O Vco e ~.  

Of course, one might also use relations (4.3), that is, consider the intersection of the images of the 
set (4.5) under operators r[to, t], t ~ [to, O0] and try to find in that intersection a multifunction G ° with 
the property ~ (co) ¢: Q Vco ~ ~.  

I have had the good fortune to be able to discuss these results with Professor N. N. Krasovskii, 
beginning from his very earliest research relating to iterative constructions, which were presented at 
his seminar. These discussions were of great value in establishing and developing this area of research. 
I am also deeply indebted to Professor Krasovskii for his unfailing support. 

This research was supported financially by the Russian Foundation for Basic Research (03-01-00415 
and 04-01-96093). 
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